Вход   /   Регистрация

Войти
Регистрация    |    Забыли пароль?

Новое на сайте:

Красный день календаря:

12 апреля (через 24 дня)
День космонавтики, отмечается с 1961 года

РАКЕТА

Перейти на предыдущую страницу
РАКЕТА

РАКЕТА, летательный аппарат, движущийся вследствие отбрасывания высокоскоростных горячих газов, создаваемых реактивным (ракетным) двигателем. В большинстве случаев энергия для движения ракеты получается при сгорании двух или более химических компонентов (горючее и окислитель, которые вместе образуют ракетное топливо) или при разложении одного высокоэнергетического химического вещества. Большинство ракет относятся к одному из двух типов – твердотопливному или жидкостному. Эти термины относятся к тому, в каком виде хранится топливо, прежде чем оно сгорит в камере ракетного двигателя. Ракета состоит из двигательной установки (двигателя и топливного отсека), систем управления и наведения, полезной нагрузки и некоторых вспомогательных систем.

Поскольку ракета несет на борту все необходимое для создания реактивной струи газа, она является единственным эффективным средством транспортировки грузов в вакууме космического пространства и одним из наиболее эффективных средств доставки боевого заряда в военных действиях. Ни один из существующих типов ракет не является универсальным. Твердотопливные и жидкостные ракеты имеют свои достоинства и недостатки, и выбор той или другой из них производится с учетом многих критериев, включающих экономичность, стоимость, сложность конструкции, задачу полета, надежность и долговечность. Твердотопливные ракеты широко используются для военных задач благодаря малому времени их подготовки к запуску, простоте и возможности длительного хранения. Жидкостные ракеты предпочтительнее для космических полетов из-за их большей экономичности и возможности регулирования тяги. См. также КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ.

ТЕОРИЯ ДВИЖЕНИЯ

Два всем знакомых примера поясняют принцип движения ракеты. При выстреле из ружья пороховые газы, расширяясь в стволе, толкают пулю вперед, а ружье назад. Пуля летит в цель, а стрелок (или лафет артиллерийского орудия) поглощают энергию отдачи за счет силы трения с поверхностью земли. Если бы стрелок стоял на коньках на льду, то из-за отдачи он покатился бы назад (и остановился только из-за трения с воздухом и льдом).

Другой пример – надутый воздушный шарик. Пока отверстие шарика закрыто, внутреннее давление воздуха уравновешивается силами упругости оболочки шарика. Если открыть отверстие, воздух будет выходить из шарика, и его неуравновешенное давление на оболочку будет толкать шарик вперед. Отметим, что шарик приводится в движение силой, действующей только на площадь отверстия. Все остальные силы, действующие на оболочку, уравновешены и не влияют на движение шарика, которое носит хаотичный характер из-за непрерывного изменения формы шарика и гибкости его горловины.

Ракетный двигатель работает аналогично, за исключением того, что за счет реакций горения или химического разложения обеспечивается устойчивый поток горячих газов, которые выбрасываются наружу через сопло. Существуют и другие методы получения реактивной струи газа (см. ниже), однако ни один из них не получил такого широкого распространения, как химический.

Все рассмотренные выше примеры движения стрелка и пули, надутого шарика и ракеты описываются третьим законом движения Ньютона, который гласит, что всякое действие имеет противоположное и равное по величине противодействие. Математически этот закон выражается в виде равенства количеств движения MV = mv. Важно отметить, что полное изменение количества движения (импульса) в системе равно нулю. Если две массы M и m равны, то их скорости V и v также равны. Если масса одного из взаимодействующих тел больше массы другого, то его скорость будет соответственно меньше. В примере со стрелком импульс mv, сообщаемый пуле, в точности такой же, как и импульс MV, сообщаемый стрелку, однако из-за малой массы пули ее скорость намного больше, чем скорость стрелка. В случае ракеты выбрасывание газов в одном направлении (действие) вызывает движение ракеты в противоположном направлении (противодействие).

РАКЕТА

РАКЕТНЫЙ ДВИГАТЕЛЬ

Внутри работающего ракетного двигателя происходит интенсивный процесс быстрого контролируемого горения. Для осуществления реакции горения (выделения энергии при реакции двух химических веществ, в результате которой образуются продукты с меньшей скрытой энергией) необходимо наличие окислительного агента (окислителя) и восстановительного агента (горючего). При горении энергия выделяется в виде тепла, т.е. внутреннего движения атомов и молекул в результате повышения температуры.

Конструкция. Ракетный двигатель состоит из двух основных частей: камеры сгорания и сопла. Камера должна иметь достаточный объем для полного смешения, испарения и сгорания компонентов топлива. Сама камера и система подачи топлива должны быть спроектированы таким образом, чтобы скорость газа в камере была ниже скорости звука, иначе горение будет неэффективным. Как и в случае надувного шарика, молекулы газа соударяются со стенками камеры и выходят через узкое отверстие (горловину сопла). При стеснении потока газа в сужающейся части сопла его скорость возрастает до скорости звука в горловине, а в расширяющейся части сопла поток газа становится сверхзвуковым. Сопло такой конструкции было предложено Карлом де Лавалем, шведским инженером, работавшим в области паровых турбин, в 1890-х годах.

Контур расширяющейся части сопла и степень его расширения (отношение площадей на выходе и в горловине) подбираются, исходя из скорости истечения газовой струи и давления окружающей среды, так что давление выхлопных газов на стенки сверхзвуковой части сопла увеличивает силу тяги, создаваемую давлением газов на переднюю часть камеры сгорания. Поскольку наружное (атмосферное) давление уменьшается с ростом высоты, а профиль расширяющейся части сопла можно оптимизировать только для одной высоты, степень расширения выбирается такой, чтобы обеспечить приемлемую эффективность для всех высот. Двигатель для малых высот должен иметь короткое сопло с небольшой степенью расширения. Разработаны сопла для регулируемой степени расширения. Однако на практике они оказываются слишком сложными и дорогими и поэтому редко используются.
Перейти на предыдущую страницу